How accurate is facial age estimation?

profile picture Matt Prendergast 5 min read
A man placing his face in the frame to perform a facial age estimation with Yoti

“How accurate is it?” is the first question regulators, businesses and users tend to ask about facial age estimation. To date, we have mainly presented the technology’s Mean Absolute Error (MAE) as a proxy for accuracy. It’s an intuitive way to understand how accurate a model is. We can say it’s accurate to 1.3 MAE for those aged between 13 and 17 years or 2.5 MAE for those aged between 6 and 70 years.

However, the answer is slightly more complicated. Following the COVID-19 pandemic, many people will be more aware of the terms ‘true positive’ and ‘false negative’ in the context of vaccinations and testing, alongside the ‘sensitivity’ of a test. These relate to the level of risk we’re prepared to accept in return for a true result versus a false result.

We can use the same terms when it comes to accuracy of facial age estimation.

White paper accuracy graphic, showing the relationship between actual age, predicted result, true or false positive rate, and true or false negative rate

In the graph above, the column on the left shows where a model returns a positive result. In this example, it’s that this person is over the age of 18. The right hand column of graph shows the model returning a negative result – i.e. this person is under 18. Using this example, the following definitions depicted above are:

TPR (True Positive Rate) – a result that correctly estimates the person as over 18
FPR (False Positive Rate) – a result that incorrectly estimates the person as over 18
FNR (False Negative Rate)- a result that incorrectly estimates the person as under 18
TNR (True Negative Rate) – a result that correctly estimates the person as under 18

The goal, of course, is to have the highest possible true negative and true positive (correct or accurate) categories as possible.

Returning to the COVID-19 comparison, false negatives are the worst result. If you had COVID-19, took a test and it came back negative, you were able to go out and potentially spread the virus. That’s our framing of false negatives.

With age, a false negative would occur if a 19-year-old is estimated as under the age of 18. It’s annoying for both the business and customer, but it happens millions of times every day. In contrast, a false positive would occur when a 17-year-old is estimated as over the age of 18. That’s where the main risk is for businesses.

A false negative rate is inconvenient and annoying for customers and organisations, as anyone aged over 18 who has been lucky enough to be asked to show ID will know. But no law is being breached.

A false positive rate is problematic as it can put operators at risk of breaching the law, depending on local regulations.

As such, beyond the ‘accuracy’ question (i.e. the ‘true’ rates), it’s important not to ignore the ‘false’ error rates.

When we talk about accuracy, the false positive rate is the key area of concern. This would result in underaged individuals being incorrectly allowed to access certain age-restricted goods, services or experiences when it is illegal for them to do so. It’s for this reason that we recommend businesses use appropriate safety thresholds.

White paper accuracy graphic, showing the relationship between actual age, predicted result, true or false positive rate, and true or false negative rate, and where a buffer can be use to account for these accuracy rates

Another common question is, how accurate can facial age estimation get? We continually train our facial age estimation model to improve its accuracy. True positive rates and true negative rates will likely never get to 100%, given the constantly changing differences in people’s lives and circumstances as they age. Although the model is not statistically perfect, it’s still much more accurate than human judgement.

Yet, society has been comfortable with using human age estimation as the accepted method for age verification for decades. In retail settings, we rely exclusively on staff to assess someone’s age visually, within seconds, based on their own life experience and environment.

Now, via initiatives such as NIST evaluation, we can actually measure the accuracy of facial age estimation in a meaningful way using true positive and true negative rates. Given that in most cases, particularly online, there’s no age checking provisions at all, we firmly believe that a scientifically proven, continually improving model is better than not having any measures in place at all.

Our facial age estimation is low cost, scalable, inclusive, privacy-preserving and is already being used globally to create safer, age-appropriate experiences.

To find out more about the accuracy of Yoti’s facial age estimation, you can download our latest white paper.

Keep reading

Under the hood of facial age estimation

Since the UK Online Safety Act came into force on Friday 25th July, there has been a lot of discussion about how effective age checks are.  Facial age estimation has been approved by Ofcom as a high assurance method for online age checks. It’s a quick, private and effective way to confirm if someone is above or below an age threshold.  Each facial age estimation is quick and simple – taking around one second. This has sparked conversation when talking to businesses, press, regulators and governments – one of the most striking comments we’ve heard when showing them the

3 min read
An image of a boy sat at home, using his mobile phone

Yoti supports platforms as UK’s Online Safety Act comes into force

Today marks a major moment for the internet in the UK: the country’s new Online Safety Act officially comes into force, bringing in a new chapter of accountability for digital platforms and service providers. From social media and gaming, to porn and dating, we’re pleased to be supporting platforms with highly effective, robust and privacy-preserving age assurance solutions. The legislation requires platforms to protect children from harmful or inappropriate content, prevent underage access, and build safer digital environments. Yoti’s age assurance technology is helping platforms to meet these new standards whilst protecting user privacy and anonymity. We’ve also been

4 min read

Facial Age Estimation white paper

Making it faster and safer to prove your age Our age estimation technology accurately estimates a person’s age by looking at their face. We built it to give everyone a secure and private way of proving how old they are in different everyday scenarios: from age checking on social platforms and online stores, to supermarket self-checkouts, bars and clubs. This privacy-friendly approach to age verification doesn’t require any personal details or documents, and all information is instantly deleted once someone receives their estimated age – nothing is ever viewed by a human.   Key takeaways

2 min read